Sponsored Links
-->

Saturday, December 2, 2017

Rethink What You Drink: 4 Soft Drink Experiments
src: cdn1.theodysseyonline.com

A soft drink (see terminology for other names) is a drink that typically contains carbonated water (although orange soda and lemonade, among others, are usually not carbonated), a sweetener, and a natural or artificial flavoring. The sweetener may be sugar, high-fructose corn syrup, fruit juice, sugar substitutes (in the case of diet drinks), or some combination of these. Soft drinks may also contain caffeine, colorings, preservatives, and other ingredients.

Soft drinks are called "soft" in contrast with "hard" alcoholic beverages. Small amounts of alcohol may be present in a soft drink, but the alcohol content must be less than 0.5% of the total volume if the drink is to be considered non-alcoholic. Fruit punch, tea, and other such non-alcoholic beverages are technically soft drinks by this definition but are not generally referred to as such.

Soft drinks may be served chilled, over ice cubes or at room temperature. In rare cases, some soft drinks, such as Dr Pepper, and Pepsi can be served warm. Soft drinks are available in many formats, including cans, glass bottles, and plastic bottles (the latter in a variety of sizes ranging from small bottles to large 2-liter containers). Soft drinks are also widely available at fast food restaurants, movie theaters, convenience stores, casual dining restaurants, dedicated soda stores, and bars from soda fountain machines. Soda fountain drinks are typically served in paper or plastic disposable cups in the first three venues. In casual dining restaurants and bars, soft drinks are often served in glasses. Soft drinks may be drunk with straws or sipped directly from the cups.

Soft drinks are mixed with other ingredients in several contexts. In Western countries, in bars and other places where alcohol is served (e.g., airplanes, restaurants and nightclubs) many mixed drinks are made by blending a soft drink with hard liquor and serving the drink over ice. One well-known example is the rum and coke, which may also contain lime juice. Some homemade fruit punch recipes, which may or may not contain alcohol, contain a mixture of various fruit juices and soda pop (e.g., ginger ale). At ice cream parlours and 1950s-themed diners, ice cream floats are often sold.


Video Soft drink



Terminology

While the term "soft drink" is commonly used in product labeling and on restaurant menus, in many countries these drinks are more commonly referred to by regional names, including carbonated beverage, cool drink, cold drink, fizzy drink, fizzy juice, lolly water, pop, seltzer, soda, soda pop, tonic, and mineral. Due to the high sugar content in typical soft drinks, they may also be called sugary drinks. In Spanish, they often use the English equivalent of 'refreshment', or (given its carbonated content) also commonly called gaseosa, from agua gaseosa (literally "fizzy water").

In the United States, the 2003 Harvard Dialect Survey tracked the usage of the nine most common names. Over half of the survey respondents preferred the term "soda", which was dominant in the Northeastern United States, California, and the areas surrounding Milwaukee and St. Louis. The term "pop", which was preferred by 25% of the respondents, was most popular in the Midwest and Pacific Northwest, while the genericized trademark "coke", used by 12% of the respondents, was most popular in the Southern United States. The term "tonic" is hyperlocal to eastern Massachusetts, although usage is declining.

In the English-speaking parts of Canada, the term "pop" is prevalent, but "soft drink" is the most common English term used in Montreal.

In the United Kingdom and Ireland, the terms "fizzy drink" and the genericized trademark "coke" are common. "Pop" and "fizzy pop" are used in northern England, while "mineral" is used in Ireland; in Scotland "fizzy juice" or even simply "juice" is colloquially encountered. In Australia and New Zealand, "Fizzy Drink" or "soft drink" is typically used. In South African English, "cool drink" and "cold drink" are used, but in Indian English "cool drink" is most prevalent. In Spanish, they often use the English equivalent of 'refreshment'.


Maps Soft drink



History

The origins of soft drinks lie in the development of fruit-flavored drinks. In Tudor England 'water imperial' was widely drank; it was a sweetened drink with lemon flavor and containing cream of tartar. 'Manays Cryste' was a sweetened cordial flavored with rosewater, violets or cinnamon.

Another early type of soft drink was lemonade, made of water and lemon juice sweetened with honey, but without carbonated water. The Compagnie des Limonadiers of Paris was granted a monopoly for the sale of lemonade soft drinks in 1676. Vendors carried tanks of lemonade on their backs and dispensed cups of the soft drink to Parisians.

Carbonated drinks

In the late 18th century, scientists made important progress in replicating naturally carbonated mineral waters. In 1767, Englishman Joseph Priestley first discovered a method of infusing water with carbon dioxide to make carbonated water when he suspended a bowl of distilled water above a beer vat at a local brewery in Leeds, England. His invention of carbonated water (also known as soda water) is the major and defining component of most soft drinks.

Priestley found that water treated in this manner had a pleasant taste, and he offered it to his friends as a refreshing drink. In 1772, Priestley published a paper entitled Impregnating Water with Fixed Air in which he describes dripping oil of vitriol (or sulfuric acid as it is now called) onto chalk to produce carbon dioxide gas, and encouraging the gas to dissolve into an agitated bowl of water.

Another Englishman, John Mervin Nooth, improved Priestley's design and sold his apparatus for commercial use in pharmacies. Swedish chemist Torbern Bergman invented a generating apparatus that made carbonated water from chalk by the use of sulfuric acid. Bergman's apparatus allowed imitation mineral water to be produced in large amounts. Swedish chemist Jöns Jacob Berzelius started to add flavors (spices, juices, and wine) to carbonated water in the late eighteenth century.

Thomas Henry, an apothecary from Manchester, was the first to sell artificial mineral water to the general public for medicinal purposes, beginning in the 1770s. His recipe for 'Bewley's Mephitic Julep' consisted of 3 drachms of fossil alkali to a quart of water, and the manufacture had to 'throw in streams of fixed air until all the alkaline taste is destroyed'.

Johann Jacob Schweppe developed a similar process to manufacture carbonated mineral water at the same time. He founded the Schweppes Company in Geneva in 1783 to sell carbonated water, and relocated his business to London in 1792. His drink soon gained in popularity; among his new found patrons was Erasmus Darwin. In 1843, Schweppes commercialised Malvern Water at the Holywell Spring in the Malvern Hills, and was appointed the official supplier to the Royal Family.

It was not long before flavoring was combined with carbonated water. The earliest reference to carbonated ginger beer is in a Practical Treatise on Brewing. published in 1809. The drinking of either natural or artificial mineral water was considered at the time to be a healthy practice, and was promoted by advocates of temperance. Pharmacists selling mineral waters began to add herbs and chemicals to unflavored mineral water. They used birch bark (see birch beer), dandelion, sarsaparilla, fruit extracts, and other substances. Flavorings were also added to improve the taste.

Mass market and industrialization

Soft drinks soon outgrew their origins in the medical world and became a widely consumed beverage, available cheaply for the masses. By the 1840s there were more than fifty soft drink manufacturers - an increase from just ten in the previous decade. Carbonated lemonade was widely available in British refreshment stalls in 1833, and in 1845 R. White's Lemonade went on sale in the UK. For the Great Exhibition of 1851 in London, Schweppes was designated the official drink supplier and sold over a million bottles of lemonade, ginger beer, Seltzer water and soda-water. There was a Schweppes soda water fountain, situated directly at the entrance to the exhibition.

Mixer drinks became popular in the second half of the century. Tonic water was originally quinine added to water as a prophylactic against malaria and was consumed by British officials stationed in the tropical areas of South Asia and Africa. As the quinine powder was so bitter people began mixing the powder with soda and sugar, and a basic tonic water was created. The first commercial tonic water was produced in 1858. The mixed drink gin and tonic also originated in British colonial India, when the British population would mix their medicinal quinine tonic with gin.

A persistent problem in the soft drinks industry was the lack of an effective sealing of the bottles. Carbonated drink bottles are under great pressure from the gas, so inventors tried to find the best way to prevent the carbon dioxide or bubbles from escaping. The bottles could also explode if the pressure was too great. Hiram Codd devised a patented bottling machine while working at a small mineral water works in the Caledonian Road, Islington, in London in 1870. His Codd-neck bottle was designed to enclose a marble and a rubber washer in the neck. The bottles were filled upside down, and pressure of the gas in the bottle forced the marble against the washer, sealing in the carbonation. The bottle was pinched into a special shape to provide a chamber into which the marble was pushed to open the bottle. This prevented the marble from blocking the neck as the drink was poured.

By mid-1873 he had granted 20 licences and received a further 50 applications. This was boosted further by a Trade Show held in London in the same year. By 1874 the licence was free to bottle manufacturers as long as they purchased the marbles, sealing rings and used his groove tool, and the mineral water firms they traded with had already bought a licence to use his bottle.

In 1892, the "Crown Cork Bottle Seal" was patented by William Painter, a Baltimore, Maryland machine shop operator. It was the first bottle top to successfully keep the bubbles in the bottle. In 1899, the first patent was issued for a glass-blowing machine for the automatic production of glass bottles. Earlier glass bottles had all been hand-blown. Four years later, the new bottle-blowing machine was in operation. It was first operated by the inventor, Michael Owens, an employee of Libby Glass Company. Within a few years, glass bottle production increased from 1,400 bottles a day to about 58,000 bottles a day.

In America, soda fountains were initially more popular, and many Americans would frequent the soda fountain daily. Beginning in 1806, Yale University chemistry professor Benjamin Silliman sold soda waters in New Haven, Connecticut. He used a Nooth apparatus to produce his waters. Businessmen in Philadelphia and New York City also began selling soda water in the early 19th century. In the 1830s, John Matthews of New York City and John Lippincott of Philadelphia began manufacturing soda fountains. Both men were successful and built large factories for fabricating fountains. Due to problems in the U.S. glass industry, bottled drinks remained a small portion of the market throughout much of the 19th century. (However, they were known in England. In The Tenant of Wildfell Hall, published in 1848, the caddish Huntingdon, recovering from months of debauchery, wakes at noon and gulps a bottle of soda-water.)

In the early 20th century, sales of bottled soda increased exponentially, and in the second half of the 20th century, canned soft drinks became an important share of the market.

During the 1920s, "Home-Paks" were invented. "Home-Paks" are the familiar six-pack cartons made from cardboard. Vending machines also began to appear in the 1920s. Since then, soft drink vending machines have become increasingly popular. Both hot and cold drinks are sold in these self-service machines throughout the world.


Soft Drink Can Cool Wallpapers | I HD Images
src: www.ihdimages.com


Production

Soft drinks are made by mixing dry or fresh ingredients with water. Production of soft drinks can be done at factories or at home. Soft drinks can be made at home by mixing a syrup or dry ingredients with carbonated water, or by lacto-fermentation. Syrups are commercially sold by companies such as Soda-Club; dry ingredients are often sold in pouches, in a style of the popular U.S. drink mix Kool-Aid. Carbonated water is made using a soda siphon or a home carbonation system or by dropping dry ice into water.

Drinks like ginger ale and root beer are often brewed using yeast to cause carbonation.

Of most importance is that the ingredient meets the agreed specification on all major parameters. This is not only the functional parameter (in other words, the level of the major constituent), but the level of impurities, the microbiological status, and physical parameters such as color, particle size, etc.

Some soft drinks contain measurable amounts of alcohol. In some older preparations, this resulted from natural fermentation used to build the carbonation. In the United States, soft drinks (as well as other beverages such as non-alcoholic beer) are allowed by law to contain up to 0.5% alcohol by volume. Modern drinks introduce carbon dioxide for carbonation, but there is some speculation that alcohol might result from fermentation of sugars in a non-sterile environment. A small amount of alcohol is introduced in some soft drinks where alcohol is used in the preparation of the flavoring extracts such as vanilla extract.


Cans Of Carbonated Fizzy Soft Drinks Stock Photo, Royalty Free ...
src: c8.alamy.com


Producers

In every area of the world there are major soft drink producers. However a few major North American companies are present in most of the countries of the world, such as Pepsi and Coca Cola. Major North American producers other than the two previously-named companies include Cott, Dr. Pepper Snapple Group, and Jones Soda.


Call For Soft Drink Sugar Tax In BudgetAccess to London
src: accesstolondon.co.uk


Health concerns

The over-consumption of sugar-sweetened soft drinks is associated with obesity, hypertension, type 2 diabetes, dental caries, and low nutrient levels. Experimental studies tend to support a causal role for sugar-sweetened soft drinks in these ailments, though this is challenged by other researchers. "Sugar-sweetened" includes drinks that use high-fructose corn syrup, as well as those using sucrose.

Many soft drinks contain ingredients that are themselves sources of concern: caffeine is linked to anxiety and sleep disruption when consumed in excess, and some critics question the health effects of added sugars and artificial sweeteners. Sodium benzoate has been investigated by researchers at University of Sheffield as a possible cause of DNA damage and hyperactivity. Other substances have negative health effects, but are present in such small quantities that they are unlikely to pose any substantial health risk provided that the beverages are consumed only in moderation.

In 1998, the Center for Science in the Public Interest published a report titled Liquid Candy: How Soft Drinks are Harming Americans' Health. The report examined statistics relating to the increase in soft drink consumption and claimed that consumption is "likely contributing to health problems". It also criticized marketing efforts by soft drink companies. In 2005, the CSPI supported the idea of warning labels on soft drinks, similar to those on cigarettes and alcohol, but as of 2017, this has yet to happen.

Obesity and weight-related diseases

From 1977 to 2002, Americans doubled their consumption of sweetened beverages--a trend that was paralleled by doubling the prevalence of obesity. The consumption of sugar-sweetened beverages is associated with weight and obesity, and changes in consumption can help predict changes in weight.

It remains possible that the correlation is due to a third factor: people who lead unhealthy lifestyles might consume more soft drinks. If so, then the association between soft drink consumption and weight gain could reflect the consequences of an unhealthy lifestyle rather than the consequences of consuming soft drinks. Experimental evidence is needed to definitively establish the causal role of soft drink consumption. Reviews of the experimental evidence suggest that soft drink consumption does cause weight gain, but the effect is often small except for overweight individuals.

Many of these experiments examined the influence of sugar-sweetened soft drinks on weight gain in children and adolescents. In one experiment, adolescents replaced sugar-sweetened soft drinks in their diet with artificially sweetened soft drinks that were sent to their homes over 25 weeks. Compared with children in a control group, children who received the artificially sweetened drinks saw a smaller increase in their BMI (by -0.14 kg/m2), but this effect was only statistically significant among the heaviest children (who saw a benefit of -0.75 kg/m2). In another study, an educational program encouraged schoolchildren to consume fewer soft drinks. During the school year, the prevalence of obesity decreased among children in the program by 0.2%, compared to a 7.5% increase among children in the control group. Another study, published in Pediatrics in 2013, concluded that for children from the age of 2 to 5, their risk of obesity increased by 43% if they were regular soft drink consumers as opposed to those who rarely or never consumed them.

Sugar-sweetened drinks have also been speculated to cause weight gain in adults. In one study, overweight individuals consumed a daily supplement of sucrose-sweetened or artificially sweetened drinks or foods for a 10-week period. Most of the supplement was in the form of soft drinks. Individuals in the sucrose group gained 1.6 kg, and individuals in the artificial-sweetener group lost 1.0 kg. A two-week study had participants supplement their diet with sugar-sweetened soft drinks, artificially sweetened soft drinks, or neither. Although the participants gained the most weight when consuming the sugar-sweetened drinks, some of the differences were unreliable: the differences between men who consumed sugar-sweetened drinks or no drinks was not statistically significant.

Other research suggests that soft drinks could play a special role in weight gain. One four-week experiment compared a 450 calorie/day supplement of sugar-sweetened soft drinks to a 450 calorie/day supplement of jelly beans. The jelly bean supplement did not lead to weight gain, but the soft drink supplement did. The likely reason for the difference in weight gain is that people who consumed the jelly beans lowered their caloric intake at subsequent meals, while people who consumed soft drinks did not. Thus, the low levels of satiety provided by sugar-sweetened soft drinks may explain their association with obesity. That is, people who consume calories in sugar-sweetened beverages may fail to adequately reduce their intake of calories from other sources. Indeed, people consume more total calories in meals and on days when they are given sugar-sweetened beverages than when they are given artificially sweetened beverages or water. However, these results are contradicted by a study by Adam Drewnowski published in 2004, in which "32 subjects consumed a 300-calorie snack of fat-free raspberry cookies or regular cola on two occasions each - either two hours ("early") or 20 minutes ("late") before lunch." It found that "...the calories eaten at lunch were not affected by whether the snack was cookies or cola."

The consumption of sugar-sweetened soft drinks can also be associated with many weight-related diseases, including diabetes, metabolic syndrome and cardiovascular risk factors, and elevated blood pressure.

According to research presented at the American Heart Association's Epidemiology and Prevention/Nutrition, Physical Activity and Metabolism 2013 Scientific Sessions by researchers at the Harvard School of Public Health, sugar-sweetened beverages may be responsible for 180,000 deaths every year worldwide.

Dental decay

Most soft drinks contain high concentrations of simple carbohydrates: glucose, fructose, sucrose and other simple sugars. If oral bacteria ferment carbohydrates and produce acids that may dissolve tooth enamel and induce dental decay, then sweetened drinks may increase the risk of dental caries. The risk would be greater if the frequency of consumption is high.

A large number of soda pops are acidic as are many fruits, sauces and other foods. Drinking acidic drinks over a long period and continuous sipping may erode the tooth enamel. A 2007 study determined that some flavored sparkling waters are as erosive or more so than orange juice.

Using a drinking straw is often advised by dentists as the drink does not come into as much contact with the teeth. It has also been suggested that brushing teeth right after drinking soft drinks should be avoided as this can result in additional erosion to the teeth due to the presence of acid.

Hypokalemia

There have been a handful of published reports describing individuals with severe hypokalemia (low potassium levels) related to extreme consumption of colas.

Soft drinks related to bone density and bone loss

In a meta-analysis of 88 studies, drinking soda correlates with a decrease in milk consumption along with the vitamin D, vitamin B6, vitamin B12, calcium, protein and other micronutrients. Phosphorus, a micronutrient, can be found in cola-type beverages, but there may be a risk in consuming too much. Phosphorus and calcium are used in the body to create calcium-phosphate, which is the main component of bone. However, the combination of too much phosphorus with too little calcium in the body can lead to a degeneration of bone mass. Research suggests a statistically significant inverse relationship between consumption of carbonated beverages and bone mineral density in young girls, which places them at increased risk of fractures.

One hypothesis to explain this relationship is that the phosphoric acid contained in some soft drinks (colas) displaces calcium from the bones, lowering bone density of the skeleton and leading to weakened bones, or osteoporosis. However, 2001 calcium metabolism studies by Dr. Robert Heaney suggested that the net effect of carbonated soft drinks, (including colas, which use phosphoric acid as the acidulant) on calcium excretion in urine was negligible. Heaney concluded that carbonated soft drinks, which do not contain the nutrients needed for bone health, may displace other foods which do, and that the real issue is that people who drink a lot of soft drinks also tend to have an overall diet that is low in calcium.

A 2006 study of several thousand men and women, found that women who regularly drank cola-based sodas (three or more a day) had significantly lower bone mineral density (BMD) of ~4 % in the hip than those who didn't, even though researchers controlled for important factors like calcium and vitamin D intake. The study also found that women who drank non-cola soft drinks didn't appear to have lower BMD and that BMD of women drinking decaffeineted cola wasn't as low as women drinking caffeinated cola sodas. The study found that the effect of regular consumption of cola sodas was not significant on men's BMD.

In the 1950s and 1960s there were attempts in France and Japan to ban the sale of Coca-Cola as dangerous since phosphates can block calcium absorption. However, these were unsuccessful as the amounts of phosphate were shown to be too small to have a significant effect.

Sugar content

The USDA's recommended daily intake (RDI) of added sugars is less than 10 teaspoons per day for a 2,000-calorie diet. High caloric intake contributes to obesity if not balanced with exercise, with a large amount of exercise being required to offset even small but calorie-rich food and drinks.

Until 1985, most of the calories in soft drinks came from sugar or corn syrup. As of 2010, in the United States high-fructose corn syrup (HFCS) is used nearly exclusively as a sweetener because of its lower cost, while in Europe, sucrose dominates, because EU agricultural policies favor production of sugar beets in Europe proper and sugarcane in the former colonies over the production of corn. HFCS has been criticized as having a number of detrimental effects on human health, such as promoting diabetes, hyperactivity, hypertension, and a host of other problems. Although anecdotal evidence has been presented to support such claims, it is well known that the human body breaks sucrose down into glucose and fructose before it is absorbed by the intestines. Simple sugars such as fructose are converted into the same intermediates as in glucose metabolism. However, metabolism of fructose is extremely rapid and is initiated by fructokinase. Fructokinase activity is not regulated by metabolism or hormones and proceeds rapidly after intake of fructose. While the intermediates of fructose metabolism are similar to those of glucose, the rates of formation are excessive. This fact promotes fatty acid and triglyceride synthesis in the liver, leading to accumulation of fat throughout the body and possibly non-alcoholic fatty liver disease. Increased blood lipid levels also seem to follow fructose ingestion over time. A sugar drink or high-sugar drink may refer to any beverage consisting primarily of water and sugar (often cane sugar or high-fructose corn syrup), including some soft drinks, some fruit juices, and energy drinks.

Benzene

In 2006, the United Kingdom Food Standards Agency published the results of its survey of benzene levels in soft drinks, which tested 150 products and found that four contained benzene levels above the World Health Organization (WHO) guidelines for drinking water.

The United States Food and Drug Administration released its own test results of several soft drinks containing benzoates and ascorbic or erythorbic acid. Five tested drinks contained benzene levels above the Environmental Protection Agency's recommended standard of 5 ppb. The Environmental Working Group has uncovered additional FDA test results that showed the following results: Of 24 samples of diet soda tested between 1995 and 2001 for the presence of benzene, 19 (79%) had amounts of benzene in excess of the federal tap water standard of 5 ppb. Average benzene levels were 19 ppb, about four times tap water standard. One sample contained 55 ppb of benzene, 11 fold tap water standards. Despite these findings, as of 2006, the FDA stated its belief that "the levels of benzene found in soft drinks and other beverages to date do not pose a safety concern for consumers".

Pesticides in India

In 2003, the Delhi non-profit Centre for Science and Environment published a disputed report finding pesticide levels in Coke and Pepsi soft drinks sold in India at levels 30 times that considered safe by the European Economic Commission. This was found in primarily 12 cold drink brands sold in and around New Delhi. The Indian Health Minister said the CSE tests were inaccurate, and said that the government's tests found pesticide levels within India's standards but above EU standards.

A similar CSE report in August 2006 prompted many state governments to have issued a ban of the sale of soft drinks in schools. Kerala issued a complete ban on the sale or manufacture of soft drinks altogether. (These were later struck down in court.) In return, the soft drink companies like Coca-Cola and Pepsi have issued ads in the media regarding the safety of consumption of the drinks.

The UK-based Central Science Laboratory, commissioned by Coke, found its products met EU standards in 2006. Coke and the University of Michigan commissioned an independent study of its bottling plants by The Energy and Resources Institute (TERI), which reported in 2008 no unsafe chemicals in the water supply used.

Kidney stones

A study published in the Clinical Journal of the American Society of Nephrology in 2013 concluded that consumption of soft drinks was associated with a 23% higher risk of developing kidney stones.


Soft Drinks by Giovanna Alves
src: img.haikudeck.com


Government regulation

Schools

In recent years, debate on whether high-calorie soft drink vending machines should be allowed in schools has been on the rise. Opponents of the (soft drink) vending machines believe that soft drinks are a significant contributor to childhood obesity and tooth decay, and that allowing soft drink sales in schools encourages children to believe they are safe to consume in moderate to large quantities. Opponents argue that schools have a responsibility to look after the health of the children in their care, and that allowing children easy access to soft drinks violates that responsibility. Vending machine proponents believe that obesity is a complex issue and soft drinks are not the only cause. They also note the immense amount of funding that soft drink sales bring to schools. Some people take a more moderate stance, saying that soft drink machines should be allowed in schools, but that they should not be the only option available. They propose that when soft drink vending machines are made available on school grounds, the schools should be required to provide children with a choice of alternative drinks (such as fruit juice, flavored water and milk) at a comparable price. Some lawmakers debating the issue in different states have argued that parents--not the government--should be responsible for children's beverage choices.

On May 3, 2006, the Alliance for a Healthier Generation, Cadbury Schweppes, The Coca-Cola Company, PepsiCo, and the American Beverage Association announced new guidelines that will voluntarily remove high-calorie soft drinks from all U.S. schools.

On 19 May 2006, the British education secretary, Alan Johnson, announced new minimum nutrition standards for school food. Among a wide range of measures, from September 2006, school lunches will be free from carbonated drinks. Schools will also end the sale of junk food (including carbonated drinks) in vending machines and tuck shops.

In 2008, Samantha K Graff published an article in the Annals of the American Academy of Political and Social Science regarding the "First Amendment Implications of Restricting Food and Beverages Marketing in Schools". The article examines a school district's policy regarding limiting the sale and marketing of soda in public schools, and how certain policies can invoke a violation of the First Amendment. Due to district budget cuts and loss in state funding, many school districts allow commercial businesses to market and advertise their product (including junk food and soda) to public school students for additional revenue. Junk food and soda companies have acquired exclusive rights to vending machines throughout many public school campuses. Opponents of corporate marketing and advertising on school grounds urge school officials to restrict or limit a corporation's power to promote, market, and sell their product to school students. In the 1970s, the Supreme Court ruled that advertising was not a form of free expression, but a form of business practices which should be regulated by the government. In the 1976 case of Virginia State Board of Pharmacy v. Virginia Citizens Consumer Council, the Supreme Court ruled that advertising, or "commercial speech", to some degree is protected under the First Amendment. To avoid a First Amendment challenge by corporations, public schools could create contracts that restrict the sale of certain product and advertising. Public schools can also ban the selling of all food and beverage products on campus, while not infringing on a corporation's right to free speech.

On December 13, 2010, President Obama signed the Healthy Hunger Free Kids Act of 2010 (effective in 2014) that mandates schools that receive federal funding to offer healthy snacks and beverages to students. The act bans the selling of soft drinks to students and requires schools to provide healthier options such as water, unflavored low-fat milk, 100% fruit and vegetable drinks or sugar-free carbonated beverages. The portion sizes available to students will be based on age: eight ounces for elementary schools, twelve ounces for middle and high schools. Proponents of the act predict the new mandate it will make it easier for students to make healthy beverage choices while at school.

In 2015, Terry-McElarth and colleagues published a study in the American Journal of Preventative Medicine on regular soda policies and their effect on school beverage availability and student consumption. The purpose of the study was to determine the effectiveness of a program beginning in the 2014-2015 school year that requires schools participating in federally reimbursable meal programs to remove all competitive venues (a la carte cafeteria sales, vending machines, and stores/snack bars/carts), on the availability of unhealthy beverages at schools and student consumption. The study analyzed state- and school district-level policies mandating soda bans and found that state bans were associated with significantly lower school soda availability but district bans showed no significant associations. In addition, no significant correlation was observed between state policies and student consumption. Among student populations, state policy was directly associated with significantly lower school soda availability and indirectly associated with lower student consumption. The same was not observed for other student populations.

Taxation

In the United States, legislators, health experts and consumer advocates are considering levying higher taxes on the sale of soft drinks and other sweetened beverages to help curb the epidemic of obesity among Americans, and its harmful impact on overall health. Some speculate that higher taxes could help reduce soda consumption. Others say that taxes should help fund education to increase consumer awareness of the unhealthy effects of excessive soft drink consumption, and also help cover costs of caring for conditions resulting from overconsumption. The food and beverage industry holds considerable clout in Washington, DC, as it has contributed more than $50 million to legislators since 2000.

In January 2013, a British lobby group called for the price of sugary fizzy drinks to be increased, with the money raised (an estimated £1 billion at 20p per litre) to be put towards a "Children's Future Fund", overseen by an independent body, which would encourage children to eat healthily in school.

Bans

In March 2013, New York City's mayor Michael Bloomberg proposed to ban the sale of non-diet soft drinks larger than 16 ounces, except in convenience stores and supermarkets. A lawsuit against the ban was upheld by a state judge, who voiced concerns that the ban was "fraught with arbitrary and capricious consequences". Bloomberg announced that he would be appealing the verdict.


6 soft drink alternatives | Live Better
src: www.medibank.com.au


See also


Five Great British Soft Drinks That Americans Should Try ...
src: images.amcnetworks.com


References


Soft Drink Images & Stock Pictures. Royalty Free Soft Drink Photos ...
src: previews.123rf.com


Further reading

  • "Beverage group: Pull soda from primary schools", USAToday, August 17, 2005
  • "After soda ban nutritionists say more can be done", Boston Globe, May 4, 2006
  • "Critics Say Soda Policy for Schools Lacks Teeth New York Times, August 22, 2006

Mountain Dew Soft Drink Energised Bottle 1.25l | Woolworths
src: cdn0.woolworths.media


External links

  • State Laws & Regulations Governing Beverage Sales in Schools at the Wayback Machine (archived February 1, 2006), American Beverage Association (PDF format)
  • "Soft Drinks in Schools", American Academy of Pediatrics

Source of article : Wikipedia